O.P.Code: 23CE0117

R23

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech. III Year I Semester Regular Examinations December-2025 WATER RESOURCES ENGINEERING

(Civil Engineering)

m:		(Civil Engineering)			=-				
Tim	ıe:	3 Hours	Max. I	Mark	s: 70				
PART-A									
ĩ		(Answer all the Questions $10 \times 2 = 20$ Marks)	001		234				
-	a	List various types of rain gauges. Define infiltration.	CO1	L1	2M				
	b	Differentiate aguifer and aguiclude.	CO1	L1	2M				
	c d	Define storage coefficient.	CO2 CO2	L2 L1	2M 2M				
	u e	Find the delta for a crop when its duty is 864 hectare/cumec on the	CO2	L1	2M				
	C	field, the base period of the crop is 120 days.	CO3	LJ	ZIVI				
	ſ	List types of irrigation.	CO3	L1	2M				
	g	Define water logging.	CO4	L1	2M				
	h	Sketch cross section of a canal.	CO4	L2	2M				
	ï	Differentiate storage and diversion head work.	CO5	L2	2M				
	j	Define uplift pressure.	CO5	LI	2M				
	J	PART-B	000						
		(Answer all Five Units $5 \times 10 = 50$ Marks)							
		UNIT-I							
2	a	Explain measurement of evaporation using pan measurement method.	CO1	L2	5M				
	b	A reservoir with a water surface area of 300 hectares has the following	CO1	L4	5M				
		data.							
		Water temperature = 30°C, Relative humidity = 50%, Wind velocity at							
		1m above ground = 12km/h, Mean barometer reading = 750 mm of Hg.							
		Estimate average daily evaporation from lake using Meyer's and							
		Rohwer's formulae.							
		OR							
3		Explain various methods used to calculate runoff.	CO1	L2	5M				
	b	Define Design flood and briefly explain its importance.	CO1	L2	5M				
		UNIT-II							
4		Given ordinates of a 4-h unit hydrograph as below. Derive the	CO ₂	L4	10M				
		ordinates of a12-h unit hydrograph for the same catchment.							
		Time (h) 0 4 8 12 16 20 24 28 32 36 40 44 Ordinates 0 20 80 130 150 130 90 52 27 15 5 0							
		Ordinates 0 20 80 130 150 130 90 52 27 15 5 0 0 64-h							
		UH							
		OR							
5	a	Sketch and explain types of aquifers	CO2	L2	5M				
-	b	Derive an expression to determine the discharge through the well using	CO2	L3	5M				
		Dupit's equation for an unconfined aquifer.	002		5111				
		UNIT-III							
6	a	Explain advantages and ill effects of irrigation.	CO3	L2	5M				
•		What is the classification of irrigation water having the following	CO3	L4	5M				
	-	characteristics: Concentration of Na, Ca and Mg are 22, 3 and 1.5	200	2.	J112				
		milli-equivalents per litre respectively, and the electrical conductivity							
		is 200 micro mhos per cm. What problems might arise in using this							
11.57		water on fine textured soils? What remedies do you suggest to							
		overcome the trouble?							

7	a	Describe the procedure for preparation of land for irrigation and soil fertility.	CO3	L2	5M
	b	Sketch and explain soil water plant relationship. UNIT-IV	CO3	L2	5M
8		Classify canal lining and explain briefly.	CO4	L2	10M
		OR			
9	a	Explain triangular lined canal section with a neat sketch.	CO4	L2	5M
	b	Design a trapezoidal concrete lined channel to carry a discharge of 350 m3/s at a slope of 1 in 5000 with a side slope of 1.5H: 1V. The value of N is 0.014 with a velocity of 2 m/s.	CO4	L4	5M
		UNIT-V			
10	a	Sketch and explain the layout of diversion head works and its components.	CO5	L2	5M
	b	Discuss Lane Weighted Creep theory.	CO5	L2	5M
		OR			
11	a	Write a short note on stream lines and equipotential line	CO5	L2	5M

OR

*** END ***

b Sketch and explain rock fill weir with sloping apron.

CO₅

L2 5M